An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip
نویسندگان
چکیده
منابع مشابه
Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force
This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...
متن کاملAnalysis of Nonlinear Thermoelastic Dissipation in Euler-Bernoulli Beam Resonators
The linear theory of thermoelastic damping (TED) has been extensively developed over the past eight decades, but relatively little is known about the different types of nonlinearities that are associated with this fundamental mechanism of material damping. Here, we initiate the study of a dissipative nonlinearity (also called thermomechanical nonlinearity) whose origins reside at the heart of t...
متن کاملNonlinear Vibration Analysis of a cantilever beam with nonlinear geometry
Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...
متن کاملNonlinear Beam Equation with Indefinite Damping
We consider the nonlinear beam equation utt + a(x)ut − f(ux)x + uxxxx = 0 in a bounded interval (0, 1) ⊂ R. The equation has an indefinite damping term, i.e., with a damping function a = a(x) possibly changing sign. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system provided ā = ∫ 1 0 a(x)dx > 0 and ‖ a− ā ‖L2≤ τ , for τ small enough. We...
متن کاملNonlinear Earthquake Analysis of Reinforced Concrete Frames with Fiber and Bernoulli-Euler Beam-Column Element
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series B
سال: 2015
ISSN: 1531-3492
DOI: 10.3934/dcdsb.2015.20.3029